

MISG 2021 Recycle in a Sugarcane Diffuser

Industry representative: Richard Loubser Sugar Milling Research Institute NPC

Sugar Milling Research Institute NPC SMRI

Based in Durban

Research in support of the southern African sugar processing industry Analytical services (SANAS accredited laboratory)

Typical values

- Cane
 - 15% Fibre
 - 15% Sugar
 - 70% Water
- Imbibition
 - ~300% on fibre \cong 50% on cane
- Chain speed
 - ~1 m/min
- Percolation rate
 - Q/A (Volumetric flow/Area)
 - ~0.1 m/min in diffuser
 - ~0.6 m/min in flooded column
- Bed height
 - ~1.5-2 m
- Stage length
 - ~4.5 6m

Perfect process

- Counter current extraction
- Plug flow i.e. no mixing
- Total wetting of cane
 - 100% saturation
 - maximum mass transfer
- Minimise imbitition

The reality

- Cane absorbs a substantial amount of water
- Diffuser operation is gravity driven
- Require saturation level achieved by
 - Multiple passes
 - Recycle

- Mixing
- Diffuser operation is a balance between
 - too little wetting low extraction
 - Flooding uncontrolled mixing low extraction
- Aim for ~95% saturation

Factors influencing recycle

- Controllable influences
 - Chain speed
 - Bed height
 - A combination of throughput and chain speed
 - Position of sprays
- Non controllable
 - Permeability (percolation rate)
 - Length of stage
 - Imbibition

© SMRI 2021 • Minimisation reduces evaporation requirements

Questions to be explored

- 1. What is optimum recycle fraction that should be used as a target for setting and controlling a diffuser?
- 2. Can a relationship between the controllable variables and noncontrollable variables be derived that will enable the factory to achieve the optimum recycle?

Discussion and clarification

